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A single degree-of-freedom oscillator subject to linearly swept and/or dithered excitation
is considered. Dither refers to the variation of an excitation frequency about a given
nominal—or primary—frequency. Dither in rocket engine turbopump shaft speeds can be
an important consideration when analyzing the dynamic response of turbomachinery
components such as turbine blades. Results indicate that the incorporation of dithered
excitation into a fatigue analysis may extend the predicted fatigue life of the structure by a
factor of two or more.

Nomenclature
A	 = amplitude of excitation
D	 = dither function
f	 = oscillator forcing function
fn 	= temporal natural frequency of oscillator
K	 = sweep rate (Hz/min)
L	 = fraction of consumed fatigue life
m	 = oscillator mass
m0 	= linear sweep constant
N	 = cycle life at a given stress level
n	 = number of cycles at a given stress level
Q	 = dynamic quality factor
t	 = time
x	 = oscillator degree of freedom
X	 = maximum response of oscillator subject to swept and/or dithered excitation
XSS	 = maximum steady-state response of oscillator subject to harmonic excitation at a constant frequency
3	 = excitation frequency
30 	= initial, or primary, excitation frequency

95	 = phase of excitation
ωn	 = angular natural frequency of oscillator

= viscous damping ratio

I. Introduction

E
ngineers responsible for the development of rocket engine turbomachinery have a long history of analyzing the
structural dynamic response of individual turbopump components such as impellers or turbine blades. High

cycle fatigue of these components is of concern especially if the component experiences prolonged excitation near a
natural frequency. High-fidelity finite element models can do an excellent job of predicting component natural
frequencies, but they will always have some associated error. Thus, when performing dynamic tests on
turbomachinery components, it is common to linearly sweep the excitation frequency. This ensures that the
component is excited—at some point during the sweep—near the natural frequencies of interest. It is important that
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the test engineer specify a sweep rate that is sufficiently slow to achieve the maximum response from the
component. A slow sweep rate thus enables the determination of accurate natural frequencies and damping values
associated with the tested hardware.

While setting an appropriate sweep rate is important when testing components, dither about the primary
excitation frequency is a consideration that arises when the turbopump is placed into service. The shaft speed of a
turbopump is either a result of engine flow parameters or can sometimes be specified. In either case, the true
instantaneous speed of the shaft will vary—or dither—about the commanded speed. For situations in which the
nominal shaft speed results in a resonant response of a component, the presence of dither may reduce that response.
Rocket engine analysts have historically cited dither as a mitigating factor when presenting dynamic stress and
fatigue results, but the effects of dither have never been quantified for rocket engine applications.

Here, we consider the response of a single degree-of-freedom (SDOF) system subject to linearly swept or
dithered excitation. The consideration of the swept case follows closely from the work of Lollock 1 and is used
primarily as a verification of the numerical methods employed herein. The consideration of dithered excitation is
more novel and will be performed across a parameter space that is consistent with the operating experience of rocket
engine turbopumps. The exploration of this parameter space gives an indication of the importance of dither when
assessing the response of turbomachinery components.

II. Methodology

A. Oscillator Model
The linear SDOF oscillator is modeled with the familiar expression

	

x^ + 2^o-^x^ + o- ^^ x = fmt^ . 	 (1)

The excitation of this system is assumed to be sinusoidal and of the form

^ (t) = Asin(q5(t)), 	 (2)

where q5(t) is the time varying argument, or phase, of the excitation. By definition, the instantaneous frequency of
the forcing function is the time derivative of q5(t). Standard vibration analysis generally considers constant
frequency excitation. In that case, q5(t) = 12t and it is clear that the frequency of excitation, fl, is equivalent to the
time derivative of q5(t).

For a linearly swept excitation with dither, the time dependent frequency of the excitation can be expressed as

	

S2(t) = S2 o + mo t + D(t),	 (3)

where 12 o is the initial—or primary—excitation frequency, m0 is the linear sweep constant, and D(t) is the dither
function. In most realistic applications, D (t) will represent a random process with known statistical properties.

Recalling that instantaneous frequency is the time derivative of the phase, the phase function is found by
integrating Eq. (3),

q5(t) = f S2(t)dt = f (S2 o + mt + D(t))dt.	 (4)

The resulting function can then be substituted into Eq. (2) to generate the oscillator’s forcing function.

B. Numerical Approach
The time-varying nature of the excitation frequency renders purely analytical solutions prohibitive. Instead, the

state-space form of Eq. (1) is integrated numerically using a standard fourth/fifth-order (i.e., fourth-order
accumulated error, fifth-order step error) Runge-Kutta algorithm that is based on the formulas presented by Cash
and Karp2. This algorithm is especially well-suited to integrating differential equations that are driven with rapidly
changing forcing functions.



When subject to swept excitation, the oscillator response is reported in terms of a response fraction that is
defined by

Response Fraction = X/XSS , 	 (7)

where X is the maximum response of the oscillator subject to swept or dithered excitation and Xss is the maximum
steady-state response of an oscillator subject to pure harmonic excitation at a constant frequency. For the lightly
damped systems of concern, it can be shown that XSS ^z A ⁄ (2(mcg), where A is the amplitude of the harmonic
excitation.

C. Calculation of Life Factors
The effects of rocket engine turbomachinery dither are quantified by comparing the fatigue life of a simulated

turbopump component subject to harmonic excitation at a constant frequency to the fatigue life of the same
component subject to dithered excitation. The ratio of these two fatigue life calculations is termed the life factor and
represents the proportion of additional service life that is predicted when the effects of dither are considered in the
analysis.

Here, fatigue life is calculated using Miner’s Rule. Miner’s Rule states that given a structure undergoing cyclical
loading, each cycle will consume a certain amount of that structure’s fatigue life 3

. By summing the amount of life
consumed by each cycle, the total amount of life consumed can be determined. The fraction of consumed life can be
found by

1 = ∑k 7 N , 	 (8)

where n is the number of cycles at a given alternating stress level and N is the number of cycles a given material is
capable of withstanding at that alternating stress. The values of N are found using an S-N curve for the material of
interest. Eq. (8) is applied to calculate the fatigue life in both the case of the excitation at a constant frequency (i.e.,
the nominal fatigue life) and in the case of dithered excitation. The life factor is simply the ratio of these two values.
That is,

Life Factor = Lnominal

Ldithered

III. Results and Discussion

A. Linearly Swept Excitation
To aid in the verification of the numerical methods, an independent reproduction of results reported by Lollock 1

was performed. Figure 1 plots response fraction against a non-dimensional sweep rate given by

Q 2
ri =(10)60f

n

where K is the sweep rate (Hz/min) and I = 1 ⁄ 2(. The oscillator model that generated the curve in Figure 1 had
a natural frequency of 1 (Hz) and viscous damping ratio of 0.01. It can be shown, however, that when plotted
against the non-dimensional parameter, ri, the response fraction curves are insensitive to changes in oscillator natural
frequency and damping, provided the damping ratio is low (< 0.03).

(9)
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Figure 1: Response Fraction as a Function of Non-Dimensional Sweep Rate.

Figure 1 can be useful in the design of a dynamics experiment employing swept excitation. For an experimental
set-up with a fixed sweep rate, Figure 1 allows one to determine how close the maximum response of the test article
is to the maximum response that could be expected if the excitation were to dwell at a natural frequency of the
article. Conversely, Figure 1 can be used to specify a sweep rate that will result in a desired response fraction. For
example, one might wish specify a sweep rate that is slow enough to ensure that the test article will respond at 95%
of its maximum response.

The response fraction curve shown in Figure 1 is entirely consistent with the results presented by Lollock 1 . This
provides confidence in the numerical integration scheme being employed here.

B. Dithered Excitation
In this section, turbopump shaft speed data are used to quantify the effects of dither on the dynamic response of a

SDOF system. In a typical flight profile, a turbopump is commanded to dwell at two or more different speeds.
Figure 2 shows a representative turbopump shaft speed profile. Note the three distinct dwell periods as indicated by
the red boxes. Turbomachinery components are typically subject to excitation at frequencies equal to certain integer
multiples of a dwell frequency. If the component in question happens to have a natural frequency near a strong
excitation frequency, then the component is susceptible to large amplitude response and possible failure due to high
cycle fatigue.

The effects of turbomachinery dither are calculated for a number of turbopump shaft speed profiles each having
multiple dwell periods. As evidenced by the dwell periods shown in Figure 2, the shaft frequency not only dithers,
but may also drift up or down slightly over the course of a dwell period. To isolate the effects of dither, it is
necessary to remove any drift from the data. This is accomplished by subtracting a five second moving average of
the speed data from the raw speed data. The resulting signal represents the dither corresponding to a given dwell
period. Figure 3 depicts the dither associated with the first dwell shown in Figure 2. Note that for this particular
dwell, the excursions from the commanded speed are generally between ± 0.8 (Hz).
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Figure 2: Instantaneous Shaft Frequency versus Time.
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Figure 3: Shaft Frequency Dither versus Time.

Once the dither from a given dwell is isolated, the instantaneous frequency signal is generated. This is achieved
by first adding the dither signal to an assumed primary frequency of the turbopump. The assumed primary
frequency is chosen such that it is consistent with the typical commanded speeds of a given turbopump. Next, the
instantaneous frequency signal is multiplied by the number of forcing cycles experienced by the component per a
single revolution of the shaft. The resulting instantaneous frequency signal is then integrated according to Eq. (4)
and applied as a forcing function to an SDOF oscillator as described in Section II A.

Figure 4 shows a one second sample of an instantaneous frequency signal. Here, the instantaneous frequency
has been normalized by the assumed primary frequency of the turbopump. Figure 5 depicts the response fraction of
the SDOF oscillator subject to excitation having the instantaneous frequency profile shown in Figure 4. Note that
when the instantaneous frequency shown in Figure 4 strays from the primary frequency (indicated by the red line), a



comparable decrease in oscillator response can be observed. Also observe the brief transient portion of the oscillator
response. This transient behavior is discarded when calculating life factors. A viscous damping ratio of 0.0012 was
used here. This value is consistent with damping ratios commonly found in (damper-less) turbine flow-path
hardware.
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Figure 4: Instantaneous Frequency versus Time
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Figure 5: Oscillator Response versus Time

Figure 6 shows a scatter plot of the oscillator amplitudes shown in Figure 5. The amplitudes are plotted against
their corresponding instantaneous frequencies and are overlaid on the steady-state response curve of the
corresponding SDOF oscillator. Notice that the response amplitudes fall closely along the top portion of the
response curve. This indicates that the transient nature of the excitation does not cause the oscillator to deviate
greatly from the theoretical steady-state response. In such cases it might therefore be possible to simplify the
analysis approach used here. Instead of numerically integrating the oscillator equation of motion subject to a
dithered excitation signal, one could approximate oscillator response amplitude by substituting instantaneous forcing
frequency information into the forced response function of the SDOF system. However, depending on the
characteristics of the oscillator and the dithered excitation, this simplification may not always be appropriate.



Figure 6: Dithered Response as a Function of Normalized Frequency.

The above-mentioned simplification is not appropriate in the case illustrated by Figure 7. Here, the response
amplitudes do substantially deviate from the theoretical curve. Figure 7 depicts both analytical (left) and
experimental (right) response scatter plots. The experimental responses represent strain gage data obtained during
the Space Shuttle Orbiter flowliner cracking investigation. The flowliner is subject to strong excitation at four
times the pump running speed and is excited near a resonant frequency of approximately 1,070 (Hz). The analytical
plot was created for a SDOF system with this same resonant frequency and was also excited at four times the pump
running speed. It should be noted, however, that the dither data used to excite the analytical system was obtained
from a turbopump that is different from the one that was used in conjunction with the flowliner system.
Nevertheless, the two plots demonstrate good agreement, with both sets of response amplitudes filling out a large
portion of the domain enclosed by the frequency response curve. Contrast this with Figure 6 where the oscillator is
subject to excitation at 74 times the pump running speed. As will be discussed in the next section, oscillators subject
to a low number of forcing cycles per revolution are less able to track the changes in excitation frequency. As a
result, the response amplitudes of these oscillators can stray significantly from the steady-state response curve.
Figure 7 also illustrates an important point concerning damping. The response curve in the experimental scatter plot
was created by adjusting damping ratio such that the vast majority of the response data falls just inside the response
curve. The damping ratio used to create this curve was 0.0014. The same response curve is plotted for the
analytical case. Note that a significant portion of the analytical response data falls outside the response curve. This
indicates that attempting to estimate damping by fitting a response curve around a set of experimental responses may
result in an over-prediction of damping ratio. Thus, the actual damping ratio associated with the flowliner data
shown here is likely even less than 0.0014.

0
Soso	 lass	 low	 mss	 1070	 ions	 1—	 mw	 Soso	 1010

	 loss	 low	 lo6l	 1070	 1075	 1oso	 loos	 lolo

Frequency (Hz)
	

Frequency (Hz)

Figure 7: Analytical and Experimental Response Scatter Plots for Similar Turbopumps.

Life factors have been calculated using shaft speed data collected during tests of two different rocket engine
turbopumps. A total of 18 life factors have been calculated with each life factor corresponding to a single dwell



period. The 18 cases represent at total of 1,412 seconds of data and the same baseline damping ratio was used for all
cases. However, due to different design characteristics, the primary shaft frequency and the number of forcing
cycles per revolution were different for the two turbopumps. In all cases, the forcing function was sampled at 50
times the natural period of the oscillator and a viscous damping ratio of 0.0012 was used. The life factors calculated
for the first turbopump ranged from 2.02 to 5.64, with a weighted average of 3.57, while those calculated for the
second turbopump ranged from 2.62 to 8.56, with a weighted average of 4.69. This indicates that for lightly damped
structures used in typical rocket engine turbopumps, it is reasonable to expect the predicted fatigue life of the
structure to be two to three times longer when the effects of dither are considered.

C. Sensitivity Studies
When faced with the analysis of a new turbopump, a complete set of sensitivity studies enables the analyst to

decide if it is worthwhile to incorporate effects of dither in the analysis. To this end, several sensitivity studies have
been devised to observe how calculated life factors change with incremental changes to individual parameters.

All sensitivity studies were performed by calculating life factors over a single ten second representative sample
of turbopump speed data. In each study, the single parameter was varied while all other parameters were held
constant at their baseline levels. In the first test, the effects of damping ratio were studied by varying ( values from
0.001 to 0.01. Figure 8 plots life factor versus damping ratio. The curve demonstrates that the effects of dither are
important for very lightly damped structures. Judging from Figure 8, it appears that accounting for the effects of
dither may only be worthwhile if the structure of interest has damping ratios less than approximately 0.003.

Figure 8: Life Factor versus Damping Ratio.

The fact that life factor decreases with increasing damping ratio can be understood by considering how the
forced response curve of a SDOF system changes with damping ratio. Increases in damping result in forced
response curves with wider peaks. Thus, when damping is relatively high, a fixed frequency excursion from the
primary excitation frequency will result in a smaller relative reduction in amplitude. Figure 9 illustrates this point.
Consider the forced response curves of a SDOF system where ( = 0.001 and one where ( = 0.01. Each forced
response curve is normalized by its respective peak value. Consider forcing at a normalized frequency of unity and
at a normalized frequency of 1.005. At a normalized frequency of unity, both normalized response amplitudes will
be very near their respective maxima. At a normalized frequency of 1.005, the response amplitude will be just 20%
of its peak value in the case where ( = 0.001. However, in the case where ( = 0.01, a normalized frequency of 1.005
results in a response amplitude that is almost 90% of the peak value. The fact that forced response curves have
lower peak values for higher levels of damping is immaterial to this discussion since the two fatigue life values used



in the calculation of life factor (see Eq. (9)) require the use of the same damping ratio. Thus, the calculation of life
factor is independent of the actual amplitude response of the component. Rather, it is a measure of the response of a
system to dithered excitation relative to the response of the same system subject to constant frequency excitation.
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f / fn = 1
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Figure 9: Normalized Frequency Response for Two Values of Damping Ratio.

As discussed in previous sections, a turbopump component is subject to strong excitation at frequencies
corresponding to critical integer multiples of the shaft speed. This value will now be referred to as forcing cycles
per revolution (FPR). The sensitivity of life factor to changes in FPR was tested for FPR values ranging from one to
100. The results of the study are shown in Figure 10. This study indicates that for FPR values greater than 40,
life factor is largely insensitive to changes in FPR value. This finding can be explained by considering the
amplitude response of oscillators subject to excitation with different FPR values. Figure 11 depicts these responses.
Note that for low FPR, the oscillator is less able to track rapid changes in excitation frequency and the resulting
response amplitude curve is relatively flat. As FPR increases, the oscillator executes many more full oscillations per
shaft revolution. Thus, its period is fast relative to the rate of change of excitation frequency and it is much more
able to track the changes in excitation frequency. Note also that there is very little difference between the cases
where FPR = 50 and FPR = 100. This helps explain why the life factor calculations are largely insensitive above
FPR values of 40.



Figure 11: Response Amplitude versus Time for Various Values of FPR.
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Figure 10: Life Factor as a Function of FPR.

The effects of varying the primary shaft frequency of the turbopump were also studied. The primary shaft
frequency was investigated over the range of 130 (Hz) to 550 (Hz) and Figure 12 plots life factor over this range.
The trend observed in Figure 12 can be explained by considering the fact that the dither (i.e., the extent of frequency
excursions from the primary frequency) is fixed regardless of primary frequency, so the forcing frequency



excursions are relatively more severe when the primary shaft speed is lower. Relatively larger forcing frequency
excursions result in lower response amplitudes which, in turn, result in larger life factors.

Figure 12: Life Factor as a Function of Primary Shaft Frequency.

The final sensitivity study was aimed at determining the appropriate sampling rate for the excitation signal. To
accurately determine oscillator response peaks, it is necessary to sample the forcing function many times per forcing
cycle. In this study, the number of samples per forcing cycle were varied from 10 to 70 and Figure 13 shows the life
factor as a function of samples per forcing cycle (i.e., sampling multiplier). Note the good convergence of life factor
values for sampling multipliers greater than 40. For the baseline cases reported here, a sampling multiplier of 50
was used. The study indicates that the life factors calculated using a sampling multiplier of 50 are approximately
2.5% higher than those calculated using a sampling multiplier of 70. Thus, the life factors reported at the end of the
previous section may represent slight over-predictions.



Figure 13: Life Factor versus Sampling Multiplier.

IV. Conclusion

It has long been understood that conventional finite life fatigue calculations on rocket engine turbomachinery
components carry some additional conservatism in that they do not consider the effects of turbopump speed dither.
However, this additional conservatism has never been quantified. Using actual turbopump shaft speed data and a
simulated structural component with representative properties, it was determined that finite life predictions can be at
least two times longer if the effects of dithered excitation are considered. In certain cases, a two times longer fatigue
life prediction may represent the difference between judging a component to be structurally adequate or not. Since
every turbopump design is different, it is unreasonable to assume that the consideration of dither will always result
in life predictions that are at least two times longer. Nevertheless, the life factor results and the sensitivity studies
reported here should provide the analyst the information necessary to determine if the effects of turbopump dither
are an important analysis consideration.
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Introduction

• A single degree-of-freedom (SDOF) oscillator subject to 
linearly swept and/or dithered excitation is considered.

• The instantaneous rotational speed of the turbopump shaft 
varies – or dithers – around the set rotational speed.

• When the nominal shaft speed causes the part to reach 
resonance, dither may:
1. Reduce the maximum response of the part

2. Extend the part’s predicted fatigue life

2



Methodology
The linear SDOF oscillator is modeled with the expression

where the forcing function         is sinusoidal, and

φ(t) is the time varying argument of the excitation. The instantaneous frequency 
of the forcing function is the time derivative of φ(t). Standard vibration analysis 
considers constant frequency excitation.  In that case, φ(t) = Ωt and the 
frequency of excitation, Ω, is equivalent to the time derivative of φ(t).

where  Ω₀ is the primary excitation frequency, m is the linear sweep constant, 
and D(t) is the dither function.

m
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The linear SDOF oscillator is modeled with the familiar expressionwhere the forcing function f(t) has units of acceleration.  The excitation of the system is assumed to beWhere φ(t) is the time varying argument, or phase, of the excitation.  By definition, the instantaneous frequency of the forcing function is the time derivative of φ(t). Standard vibration analysis generally considers constant frequency excitation.  In that case, φ(t) = Ωt and it is clear that the frequency of excitation, Ω, is equivalent to the time derivative of φ(t).where Ω₀ is the initial—or primary—excitation frequency, m is the linear sweep constant, and D(t) is the dither function.



Methodology

• The phase function is found by integrating φ(t)

• Substituting into                               will generate the 
oscillator’s forcing function.

∫ ∫ ++Ω=Ω= dttDmtdttt ))(()()( 0φ

( )( )tAtf φsin)( =
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Linearly Swept Excitation
• An reproduction of results reported by Lollock1 was performed. Natural 

frequency = 1 (Hz) and viscous damping ratio = 0.01. 

• When plotted against η , the response fraction is insensitive to oscillator 
natural frequency and damping.  (damping ratio < 0.03)

• Response fraction is entirely consistent with Lollock1.  
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Test Data
• The effects of dither are 

calculated for turbopump shaft 
speed profiles, each having 
multiple dwell periods.

• Moving average of turbopump 
shaft speed is removed from total 
speed signal to produce dither 
signal

6



Sample Oscillator Response
• Dither signal is divided into one second segments that will be analyzed individually

• When the instantaneous frequency strays from the primary frequency, a comparable 
decrease in oscillator response can be observed.

7



Sample Oscillator Response

• The oscillator response amplitudes are plotted with the corresponding 
instantaneous frequencies and overlaid on the response curve of a SDOF 
oscillator.  

• The response amplitudes fall closely along the top portion of the response 
curve. 

8



Response Comparison

Analytical Response Experimental Response
• From Sample Oscillator 

response data
• From Space Shuttle Orbiter 

flowliner cracking investigation.
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• Response amplitudes deviate from the theoretical curve.
• Experimental response curve created by adjusting damping ratio so that the 

response data is inside the curve
• May result in an over-prediction of damping ratio.
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Life Factor Calculation

• The life factor quantifies the effects of dither.
• Life factor represents the proportion of additional 

service life, when dither is considered.
• Ratio of nominal fatigue life to dithered fatigue 

life.
• Miner’s Rule: given a structure undergoing 

cyclical loading, each cycle will consume a 
certain amount of that structure’s fatigue life2 

2 Juvinall, R. C., and Marshek, K. M., Fundamentals of Machine Component Design, 3rd ed., Wiley, New York, 
2000, Chap. 8.
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   The life factor quantifies the effects of dither by the ratio of  the fatigue life of a simulated turbopump component subject to pure harmonic excitation at a constant frequency to the fatigue life of the same component subject to dithered excitation.  



Life Factor Calculation
• The fraction of consumed life can be found by summing the amount of life 

consumed by each cycle

where n = number of cycles at a given stress level and N = cycle life at a 
given stress level.

• The summation is applied to calculate the fatigue life in the case of the 
excitation at a constant frequency and in the case of dithered excitation.  

• The life factor is the ratio of nominal life to dithered life.
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Results
• 20 life factors calculated from two different 

turbopumps
• Each life factor corresponds to a single dwell period.
• The 20 calculated life factors represent 1622 seconds 

of data.
• Range of calculated life factors

– Turbopump 1: 2.03 – 5.64 (Weighted Ave. = 3.82)
– Turbopump 2: 2.62 – 8.56 (Weighted Ave. = 5.17)

• Predicted life may be two or more times longer when 
dither is considered.

12
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   A total of 20 life factors have been calculated using shaft speed data collected during tests of two different rocket engine turbopumps. Each life factor corresponds to a single dwell period.   For lightly damped structures used in typical rocket engine turbopumps, it is reasonable to expect the predicted life of the structure to be two to three times longer when the effects of dither are considered.



Sensitivity Studies

• Sensitivity studies observe how life factors 
change with incremental changes to individual 
parameters.
– Damping ratio
– Forcing cycles per revolution (FPR)
– Primary shaft frequency
– Number of samples per forcing cycle (sampling 

multiplier)
• 10 second representative sample

13
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   Several sensitivity studies have been devised to observe how calculated life factors change with incremental changes to individual parameters.



Damping Ratio

• Damping ratio values range from 0.001 to 0.01

14



Damping Ratio
• Increases in damping result in forced response curves with wider peaks.  

When damping is high, a fixed frequency excursion from the primary 
excitation frequency results in a smaller relative reduction in amplitude.

f / fn = 
1

f / fn = 1.005
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FPR
• A turbopump component is subject to strong excitation at frequencies 

corresponding to critical integer multiples of the shaft speed.
• FPR values tested from one to 100.

16



• For FPR values greater than 40, life factor is largely insensitive to changes in 
FPR value.

• Consider the amplitude response of oscillators subject to excitation with 
different FPR values.

• For low FPR, the oscillator is less able to track rapid changes in excitation 
frequency and the resulting response amplitude curve is relatively flat. 

• More full oscillations at higher FPR.

FPR
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For FPR values greater than 40, life factor is largely insensitive to changes in FPR value.Consider the amplitude response of oscillators subject to excitation with different FPR values.For low FPR, the oscillator is less able to track rapid changes in excitation frequency and the resulting response amplitude curve is relatively flat.  For high FPR, the oscillator executes many more full oscillations per shaft revolution.



• Primary shaft frequency range is 130 (Hz) to 550 (Hz)
• Dither is fixed regardless of primary frequency, 
• Forcing frequency excursions are relatively more severe when the primary 

shaft speed is lower.

Primary Shaft Frequency
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Sampling Multiplier
• Range: 10 to 70
• For baseline case, number of samples per forcing cycle was 50.

• Life factors calculated with sampling multiplier = 50 are approximately 2.5% 
higher than those calculated using a sampling multiplier = 70.

• Life factors reported previously may represent slight over-predictions.
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Presentation Notes
Range: 10 to 70For baseline case, number of samples per forcing cycle was 50.The study indicates that the life factors calculated using a sampling multiplier of 50 are approximately 2.5% higher than those calculated using a sampling multiplier of 70.  Thus, the life factors reported at the end of the previous section may represent slight over-predictions



Conclusions
• Finite life predictions can be two or more times 

longer if dither is considered.
• Unreasonable to assume the consideration of dither 

always results in life predictions two or more times 
longer. 

• Life factor results and sensitivity studies provide 
information to determine if the effects of dither are an 
important analysis consideration.
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Presentation Notes
Using actual turbopump shaft speed data and a simulated structural component with representative properties, it was determined that finite life predictions can be two to three times longer if the effects of dithered excitation are considered.Since every turbopump design is different, it is unreasonable to assume that the consideration of dither will always result in life predictions that are two to three times longer. The life factor results and the sensitivity studies reported here should provide the analyst the information needed to determine if the effects of turbopump dither are an important analysis consideration.
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